DAO-Based Society-In-The-Loop Model: Redesigning Society-In-The-Loop Framework to Concrete Social Dialogue Key Measurement for Platform Workers
DOI:
https://doi.org/10.21564/2414-990X.166.312167Keywords:
automated decision-making, decentralized autonomous organizations, digital labour platforms, platform workers, social dialogueAbstract
The advancements in Information Communication Technologies (ICT) have caused widespread adoption of immersive technologies throughout society. Among these, artificial intelligence (AI) is the most popular, increasingly integrated into various business practices. The capacity of this technology to process large volumes of data has made it indispensable for businesses, driving efficiency and innovation across sectors. Despite the benefits of these technologies, AI technology often compromises employee rights due to biased automated decision-making and pervasive monitoring processes. In response, the European Commission took a decisive step to protect platform workers with its proposal for the Directive on Improving Working Conditions in Platform Work (2021/0414 COD). This directive aims to ensure fairness, transparency, and accountability within digital labour platforms by introducing four crucial measures designed to counteract biased decision-making and intrusive monitoring in its algorithmic management chapter. However, one of these measures “social dialogue” remains abstract. This paper proposes a blockchain-based AI feedback loop model: DAO-based Society-In-The-Loop (DAO-SITL) Model to concrete this key measurement by redesigning the Society-In-The-Loop (SITL) framework through Decentralized Autonomous Organizations (DAO) governance approach.
References
Addison, J. T., & Siebert, W. S. (1994). Recent developments in social policy in the new European Union. ILR Review, 48(1), 5-27. https://doi.org/10.1177/001979399404800102.
Altenried, M. (2020). The platform as factory: Crowdwork and the hidden labour behind artificial intelligence. Capital & Class, 44(2), 145-158. https://doi.org/10.1177/0309816819899410.
Alsagheer, D., Xu, L., & Shi, W. (2023). Decentralized machine learning governance: Overview, opportunities, and challenges. IEEE Access, 11, 96718-–96732. https://doi.org/10.1109/ACCESS.2023.3311713.
Arroyo, J., Davó, D., Martínez-Vicente, E., Faqir-Rhazoui, Y., & Hassan, S. (2022). DAO-Analyzer: Exploring activity and participation in blockchain organizations. In Companion Publication of the 2022 Conference on Computer Supported Cooperative Work and Social Computing (pp. 193-196). https://doi.org/10.1145/3500868.3559707.
Bernhardt, A., Kresge, L., & Suleiman, R. (2023). The data-driven workplace and the case for worker technology rights. ILR Review, 76(1), 3-29. https://doi.org/10.1177/00197939221131558.
Birgillito, G., & Birgillito, M. (2018). Algorithms and ratings: Tools to manage labour relations. Proposals to renegotiate labour conditions for platform drivers. Labour & Law Issues, 4(2), Article 2. https://doi.org/10.6092/issn.2421-2695/8798.
Bischof, E., Botezatu, A., Jakimov, S., Suharenko, I., Ostrovski, A., Verbitsky, A., Yanovich, Y., Zhavoronkov, A., & Zmudze, G. (2022). Longevity Foundation: Perspective on decentralized autonomous organization for special-purpose financing. IEEE Access, 10, 33048-33058. https://doi.org/10.1109/ACCESS.2022.3161392.
Chao, C.-H., Ting, I.-H., Tseng, Y.-J., Wang, B.-W., Wang, S.-H., Wang, Y.-Q., & Chen, M.-C. (2022). The study of decentralized autonomous organization (DAO) in social network. In Proceedings of the 9th Multidisciplinary International Social Networks Conference (pp. 59-65). https://doi.org/10.1145/3561278.3561293.
Clifford, D., Goldenfein, J., Jimenez, A., & Richardson, M. (2023). A right of social dialogue on automated decision-making: From workers’ right to autonomous right. Technology and Regulation, 1-9. https://doi.org/10.26116/techreg.2023.001.
de Souza Arruda, M. (2024). Algorithmic management and work on digital labor platforms: Effects of recommendation algorithms. In A. Iglesias, J. Shin, B. Patel, & A. Joshi (Eds.). Proceedings of World Conference on Information Systems for Business Management (pp. 443-457). Springer Nature. https://doi.org/10.1007/978-981-99-8346-9_37.
Directorate-General for Employment, Social Affairs and Inclusion (European Commission), PPMI, Barcevičius, E., Gineikytė-Kanclerė, V., Klimavičiūtė, L., & Ramos Martin, N. (2021). Study to support the impact assessment of an EU initiative to improve the working conditions in platform work: Final report. Publications Office of the European Union. https://data.europa.eu/doi/10.2767/527749.
Dunn, M. (2020). Making gigs work: Digital platforms, job quality and worker motivations. New Technology, Work and Employment, 35(2), 232-249. https://doi.org/10.1111/ntwe.12167.
Dziundziuk, V., & Dziundziuk, B. (2022). Public administration using blockchain technology and platforms: New opportunities. Pressing Problems of Public Administration, 2(61), Article 61. https://doi.org/10.26565/1684-8489-2022-2-07.
Dwivedi, V., Pattanaik, V., Deval, V., Dixit, A., Norta, A., & Draheim, D. (2022). Legally enforceable smart-contract languages: A systematic literature review. ACM Computing Surveys, 54(5), 1-34. https://doi.org/10.1145/3453475.
El Faqir, Y., Arroyo, J., & Hassan, S. (2020). An overview of decentralized autonomous organizations on the blockchain. In Proceedings of the 16th International Symposium on Open Collaboration (pp. 1-8). https://doi.org/10.1145/3412569.3412579.
European Commission. (2021). Proposal for a directive of the European Parliament and of the Council on improving working conditions in platform work (COM(2021) 762 final; 2021/0414 (COD)). Brussels.
Fraga-Lamas, P., & Fernández-Caramés, T. M. (2020). Leveraging blockchain for sustainability and open innovation: A cyber-resilient approach toward EU Green Deal and UN Sustainable Development Goals. In Computer Security Threats. IntechOpen. https://doi.org/10.5772/intechopen.92371.
Fumagalli, A., Lucarelli, S., Musolino, E., & Rocchi, G. (2018). Digital labour in the platform economy: The case of Facebook. Sustainability, 10(6), Article 6. https://doi.org/10.3390/su10061757.
Garben, S. (2020). Balancing social and economic fundamental rights in the EU legal order. European Labour Law Journal, 11(4), 364-390. https://doi.org/10.1177/2031952520927128.
Göksal, Ş. İ., & Solarte Vasquez, M. C. (2024). The blockchain-based trustworthy artificial intelligence supported by stakeholders-in-the-loop model. [Manuscript submitted for publication]. Department of Law, Tallinn University of Technology.
Göksal, Ş. İ., Solarte Vasquez, M. C., & Chochia, A. (in press). The EU AI Act’s alignment within European Union's regulatory framework on artificial intelligence. International and Comparative Law Review. Advance online publication.
Hohma, E., & Lütge, C. (2023). From trustworthy principles to a trustworthy development process: The need and elements of trusted development of AI systems. AI, 4(4), Article 4. https://doi.org/10.3390/ai4040046.
Ibrahimy, M. M., Norta, A., & Normak, P. (2024). Blockchain-based governance models supporting corruption-transparency: A systematic literature review. Blockchain: Research and Applications, 5(2), 100186. https://doi.org/10.1016/j.bcra.2023.100186.
Independent High-Level Expert Group on Artificial Intelligence Set Up by the European Commission. (2019). Ethics guidelines for trustworthy AI. Brussels.
Jaiswal, A., Arun, C. J., & Varma, A. (2022). Rebooting employees: Upskilling for artificial intelligence in multinational corporations. The International Journal of Human Resource Management, 33(6), 1179–1208. https://doi.org/10.1080/09585192.2021.1891114.
Joamets, K., & Solarte Vasquez, M. C. (2020). Regulatory framework of the research-based approach to education in the EU. TalTech Journal of European Studies, 10(3), 109-136. https://doi.org/10.1515/bjes-2020-0024.
Kullmann, M. (2018). Platform work, algorithmic decision-making, and EU gender equality law. International Journal of Comparative Labour Law and Industrial Relations, 34(1).
Langer, M., & Landers, R. N. (2021). The future of artificial intelligence at work: A review on effects of decision automation and augmentation on workers targeted by algorithms and third-party observers. Computers in Human Behavior, 123, 106878. https://doi.org/10.1016/j.chb.2021.106878.
Liu, L., Zhou, S., Huang, H., & Zheng, Z. (2021). From technology to society: An overview of blockchain-based DAO. IEEE Open Journal of the Computer Society, 2, 204-215. https://doi.org/10.1109/OJCS.2021.3072661.
Merrell, I. (2022). Blockchain for decentralised rural development and governance. Blockchain: Research and Applications, 3(3), 100086. https://doi.org/10.1016/j.bcra.2022.100086.
Mendonça, P., & Kougiannou, N. K. (2023). Disconnecting labour: The impact of intraplatform algorithmic changes on the labour process and workers’ capacity to organise collectively. New Technology, Work and Employment, 38(1), 1-20. https://doi.org/10.1111/ntwe.12251.
Morrison, R., Mazey, N. C. H. L., & Wingreen, S. C. (2020). The DAO controversy: The case for a new species of corporate governance? Frontiers in Blockchain, 3. https://doi.org/10.3389/fbloc.2020.00025.
Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., & Fernández-Leal, Á. (2023). Human-in-the-loop machine learning: A state of the art. Artificial Intelligence Review, 56(4), 3005-3054. https://doi.org/10.1007/s10462-022-10246-w.
Muller, Z. (2019). Algorithmic harms to workers in the platform economy: The case of Uber. Columbia Journal of Law and Social Problems, 53.
Munn, L. (2024). Digital labor, platforms, and AI. In H. Werthner, C. Ghezzi, J. Kramer, J. Nida-Rümelin, B. Nuseibeh, E. Prem, & A. Stanger (Eds.). Introduction to Digital Humanism: A Textbook (pp. 557-569). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-45304-5_35.
Pereira, J. R., & Garcia, G. (2023). DAOs: Governance in the blockchain era. In Blockchain Applications – Transforming Industries, Enhancing Security, and Addressing Ethical Considerations. IntechOpen. https://doi.org/10.5772/intechopen.109040.
Rahwan, I. (2018). Society-in-the-loop: Programming the algorithmic social contract. Ethics and Information Technology, 20(1), 5-14. https://doi.org/10.1007/s10676-017-9430-8.
Rani, U., & Furrer, M. (2021). Digital labour platforms and new forms of flexible work in developing countries: Algorithmic management of work and workers. Competition & Change, 25(2), 212-236. https://doi.org/10.1177/1024529420905187.
Rikken, O., Janssen, M., & Kwee, Z. (2023). The ins and outs of decentralized autonomous organizations (DAOs): Unraveling the definitions, characteristics, and emerging developments of DAOs. Blockchain: Research and Applications, 4(3), 100143. https://doi.org/10.1016/j.bcra.2023.100143.
Rosenfeld, M. (1984). Contract and justice: The relation between classical contract law and social contract theory. Iowa Law Review, 70(4), 769-900.
[Saurabh, K., Rani, N., & Upadhyay, P. (2024). Towards novel blockchain decentralized autonomous organisation (DAO) led corporate governance framework. Technological Forecasting and Social Change, 204, 123417. https://doi.org/10.1016/j.techfore.2024.123417.
Schmager, S., & Sousa, S. (2021). A toolkit to enable the design of trustworthy AI. In C. Stephanidis, M. Kurosu, J. Y. C. Chen, G. Fragomeni, N. Streitz, S. Konomi, H. Degen, & S. Ntoa (Eds.). HCI International 2021—Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence (pp. 536-555). Springer International Publishing. https://doi.org/10.1007/978-3-030-90963-5_41.
Schmitz, A., Akila, M., Hecker, D., Poretschkin, M., & Wrobel, S. (2022). The why and how of trustworthy AI: An approach for systematic quality assurance when working with ML components. At – Automatisierungstechnik, 70(9), 793-804. https://doi.org/10.1515/auto-2022-0012.
Silva, V. (2022). The ILO and the future of work: The politics of global labour policy. Global Social Policy, 22(2), 341-358. https://doi.org/10.1177/14680181211004853.
Smith, N. (1996). The new urban frontier: Gentrification and the revanchist city. Routledge. https://doi.org/10.4324/9780203975640.
Solarte-Vásquez, M. C., & Nyman-Metcalf, K. (2017). Smart contracting: A multidisciplinary and proactive approach for the EU digital single market. TalTech Journal of European Studies, 7(2), 208-246. https://doi.org/10.1515/bjes-2017-0017.
Tabatabaei, M. H., Vitenberg, R., & Veeraragavan, N. R. (2023). Understanding blockchain: Definitions, architecture, design, and system comparison. Computer Science Review, 50, 100575. https://doi.org/10.1016/j.cosrev.2023.100575.
Tolmach, P., Li, Y., Lin, S.-W., Liu, Y., & Li, Z. (2021). A survey of smart contract formal specification and verification. ACM Computing Surveys, 54(7), 148:1-148:38. https://doi.org/10.1145/3464421.
Tyagi, A. K. (2023). Decentralized everything: Practical use of blockchain technology in future applications. In R. Pandey, S. Goundar, & S. Fatima (Eds.). Distributed Computing to Blockchain (pp. 19-38). Academic Press. https://doi.org/10.1016/B978-0-323-96146-2.00010-3.
Ushida, R., & Angel, J. (2021). Regulatory considerations on centralized aspects of DeFi managed by DAOs. In M. Bernhard, A. Bracciali, L. Gudgeon, T. Haines, A. Klages-Mundt, S. Matsuo, D. Perez, M. Sala, & S. Werner (Eds.). Financial Cryptography and Data Security. FC 2021 International Workshops (pp. 21-36). Springer. https://doi.org/10.1007/978-3-662-63958-0_2.
van Doorn, N. (2017). Platform labor: On the gendered and racialized exploitation of low-income service work in the ‘on-demand’ economy. Information, Communication & Society, 20(6), 898-914. https://doi.org/10.1080/1369118X.2017.1294194.
Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. The International Journal of Human Resource Management, 33(6), 1237-1266. https://doi.org/10.1080/09585192.2020.1871398.
Webster, C., & Ivanov, S. (2020). Robotics, artificial intelligence, and the evolving nature of work. In B. George & J. Paul (Eds.). Digital Transformation in Business and Society: Theory and Cases (pp. 127-143). Springer International Publishing. https://doi.org/10.1007/978-3-030-08277-2_8.
Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., & He, L. (2022). A survey of human-in-the-loop for machine learning. Future Generation Computer Systems, 135, 364-381. https://doi.org/10.1016/j.future.2022.05.014.
[Zicari, R. V., Amann, J., Bruneault, F., Coffee, M., Düdder, B., Hickman, E., Gallucci, A., Gilbert, T. K., Hagendorff, T., van Halem, I., Hildt, E., Holm, S., Kararigas, G., Kringen, P., Madai, V. I., Mathez, E. W., Tithi, J. J., Vetter, D., Westerlund, M., & Wurth, R. (2023). How to assess trustworthy AI in practice. Digital Society, 2(3), 35. https://doi.org/10.1007/s44206-023-00063-1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Танел Керікмяе, Шабан Ібрагім Гьоксал, Арчіл Чочія
This work is licensed under a Creative Commons Attribution 4.0 International License.